Analysis of Sinuosity and Temporal Shifting of Channel Belt of the Kaljani River in the Foothills of the Eastern Himalaya in Cooch Behar District, West Bengal

Shasanka Kumar Gayen^{1#} and Koyel Roy²

Abstract: Changing nature of channel pattern and lateral shifting of the rivers are common phenomena of the foothill of Eastern Himalayas. The present study mainly concentrated on the assessment of changing nature of channel form and shifting of bank lines of Kaljani river on a large temporal scale with advanced geospatial methods. The study also focussed on vulnerability assessment of the villages to the meander-belt zone of the Kaljani river for the time span of 57 years (1962-2019). For the analysis of sinuous nature and lateral shift of the Kaljani river, sinuosity index and transect method had been applied. Bank lines were delineated on toposheet and LANDSAT imageries and with the help of 12 cross-sections and after that lateral shift, migration rate and direction of the shift were also measured. From the result it is seen that increasing meander bend, lateral shift hasan impact on the surrounding villages of Cooch Behar-II and Tufanganj-I blocks of Cooch Behar district.

Keywords: Sinuosity Index, Lateral shifting, Meander belt, Vulnerability assessment

Introduction

Meandering River channels frequently shift their bank lines within their valleys confined within the vast alluvial flood plain of eastern Himalayas. They are naturally prone to shifting in response to variation of water and sediment discharge, tectonic instability, bank erosion, flood occurrences and human interferences (Lane and Richards 1997, Rinaldi 2003, Li et. al. 2007, Bierman and Montgomery 2014, Ghosh and Mistri 2015). The significance of quantification of changing nature of meandering rivers is not only limited in the arena of geomorphologists, soil scientist and hydrologists but also important for the environment planners to take precautions for the long-term river protection or developmental strategies (Dhar and Nandargi 2000). Sinuous nature of the rivers, located in the foothills of Eastern Himalaya is also an important factor of channel dynamicity, which was assessed with the help of sinuosity index. Friedkin (1945), Leopold and Wolman (1957), Schumm (1963), Brice (1964), Mueller (1968) and Friend and Sinha (1993) have given and refurbished

¹ Associate Professor, Department of Geography, Cooch Behar Panchanan Barma University, email: gshasanka@gmail.com

² Research Scholar, Department of Geography, Cooch Behar Panchanan Barma University, emial: koyelroy66@gmail.com

the definition of sinuosity index. Application of Multispectral satellite data of different time frames are major breakthrough for identifying channel dynamics and bank line shift of the rivers, which are now being focussed by several researchers (Yang et. al. 1999, Pati et. al. 2008, Sarma and Acharjee 2012, Gogoi and Goswami 2013, Chakraborty and Mukhopadhay 2015, Dhari et. al. 2015, Ophra et. al. 2018, Mandal et.al 2018).

The Kaljani river after originating from Bhutan hills enters into the plain areas at Alipurduar district and flows through Alipurduar and Cooch Behar district. Reduced gradient of the river causes sudden drop of huge sediments and flood deluge, which ultimately results in meandering process and consequent shifting of river. Lateral shifting of the Kaljani river has resulted into erosion and deposition of sediment load, which have far reached impact on the agriculture dependent livelihoods and land use patterns of the villages situated by the side of the river bank. So, analysis of the vulnerable villages is also an important aspect of geomorphology (Dey and Mandal 2019, Mukherjee and Pal 2017, Thakur et. al. 2012). So, appraisal of shifting behaviour of Kaljani river should conduct to check those impacts on the economy of the district and better planning to prevent flood occurrences.

The aims of the present study to assess the changing sinuous nature of the Kaljani river and to quantify bank lines shift of the river for the last 57 years. It will also show the affected villages of Cooch Behar district due to the oscillation of channel belt in different study periods.

The Study Area

The Kaljani river is an important tributary of Torsa river, which is a part of the lower Brahmaputra system. It originates from Dungenia Hill of Bhutan and debouches in the Torsa river near Deocharai village of Cooch Behar district, India. The reach of the Kaljani river under study extends from 89°34¹ East to 89°34¹55¹¹ East longitude and 26°16°55¹¹ North to 26° 24¹46¹¹ North latitude in Cooch Behar district of West Bengal (Fig 1). The area belongs to Tal region of eastern India and relief varies between 100- 60 Metres. The river reach has a length of 27 Km and flows almost north to south direction taking sinuous pattern. The area is featured by numerous oxbow lakes, swamps, paleochannels and meanders.

Database and Methodology

For depicting historical changes of sinuous nature of Kaljani River, toposheet of US Army corps and LANDSAT imageries of USGS were downloaded, compared and analysed. The toposheet were geo-referenced and converted into a digital form with UTM projection with WGS 84 coordinate system. After that, the river was digitized and this was taken as the base year map. LANDSAT imageries for the years (1992, 2007 and 2019) were downloaded from the website of USGS Earth Explorer and processed. In the next step of active channel, secondary channel and their bank lineswere digitized and overlaid. The materials used for the purpose of the study are enlisted in table 1.

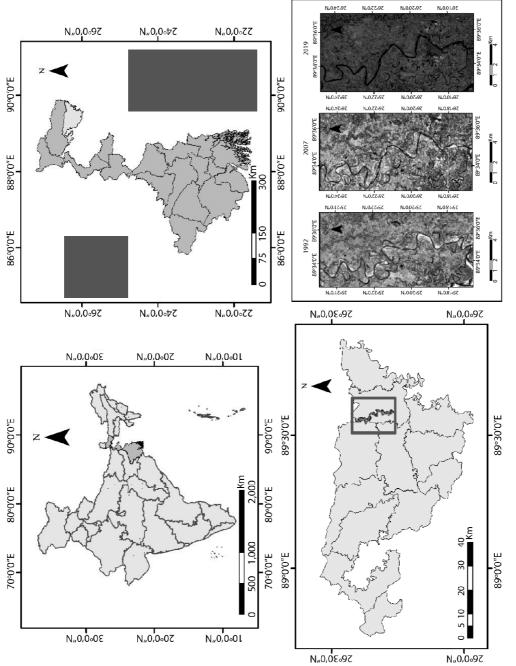


Fig.1. Location mapand flood plain area of Kaljani river in different years

Data type Satellite Survey year/ sources Path/row Scale/spatial sensor/map no. Acquisition date resolution Toposheet US Army corps 1:250000 G-45 L 1962 LANDSAT 5 MSS 08/03/1992 USGS Earth 138/42 30 Metres Explorer LANDSAT 5 USGS Earth MSS 18/03/2007 138/42 30 Metres Explorer LANDSAT 8 **OLI/TIROS** USGS Earth 30 Metres 20/04/2019 138/42 Explorer

Table 1. The details of the Geospatial data used in the study

Channel Sinuosity

To calculate the sinuosity index for different segments of the river, mid-channel length and overall channel belt length were measured with the help of Arc GIS 10.3.1.from toposheet and LANDSAT imageries, after that sinuosity index(P), proposed by Friend and Sinha (1993)was applied [Eq.1]

$$P = L_{cmax} / L_{R}$$

Where, P= sinuosity index; L_{cmax} = length of the midline of single channel or midline of the widest channel of the reach; L_{R} = overall length of that reach.

After calculating the sinuosity index for every year, classification of the channel was done according to the scheme of Rust (1978)-

Channel classification	Single channel	Multiple channels
1. Low sinuosity (<1.5)	Straight	Braided
2. High sinuosity (>1.5)	meandering	Anastomosing

Table 2. Classification of channel pattern (B.R. Rust, 1978)

Also, for calculating the Sinuosity index for overall river reach, method of S.A. Schumm (1963) have been applied-

Sinuosity Index (SI)= O_{t}/E_{t}

Where, O_L is observed path of a river and E_L is expected straight path of that river.

Quantification of Channel Shifting

Channel shifting can be quantified using two methods (Rapp and Abbe2003), they are -

1. Polygon and 2. Transects method

For the present study transects method has been applied. This method consists of the determination of base year and identification of the active channel for that year; division of the flood plain into transects which are equidistant; overlaying of bank lines of active channels of different years and flood plain transects and measurement of migration distance and migration rate from that overlay.

Vulnerability of the Villages to Channel Shifting

River Presence Frequency Approach (RPFA) has been applied to show the villages which are vulnerableto the past incident of channel shifting. This method is based on the number of channel appearance on the villages and total number of the year (Mukherjee and Pal2017, Dey and Mandal 2018) [Eq. 2]

 $RPFA = \sum RPn / N$

RPn- is the number of presences of the river and N- is the total number of years considered for the study.

Results and Discussion

Change in the Sinuosity during 1962-2019

In 1962, calculated Sinuosity Index (SI) for Kaljani river was 1.68 (Table 3), which indicated that the river was meandering at that time. In 1992, sinuosity index increased to 1.82 and in some segments Sinuosity index (P) attained the value more than 2. After 15 years from 1992, the sinuosity index decreased to 1.79, due to bifurcating of single-channel river into multiple channel by point bars in some segments, although from overall viewpoint channel remained meandering. In next 12 years (2007-2019), again sinuosity index decreases to 1.76, but from segment wise study it is clear that in upper portion sinuosity index is high as 2, whereas near confluence point with the Torsa river it is low as 1, which is indicative of straight channel pattern.

Table 3. Sinuosity Index according to Schumm
Year Sinuosity Index

Year	Sinuosity Index	
1962	1.68	
1992	1.82	
2007	1.79	
2019	1.76	

Lateral Shifting of Kaljani River (1962-2019)

For analysing spatiotemporal lateral shift of Kaljani River, 12 cross-sections have been drawn to cover the entire reach of the aforesaid river (Fig. 3). The active channel of 1962 was taken as the

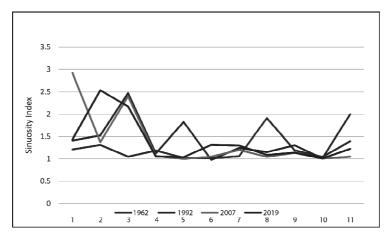


Fig. 2 Sinuosity Index of different segments for Kaljani River

base year and this channel was overlaid on channels of different years (1992, 2007 and 2019). The study period was divided into three-time spans, they are -1. The first phase (1962-1992) consisting 30 years, 2. The second phase (1962-2007) covering 45 years and 3. The last phase (1962-2019) comprising 57 years. Then, the distance of lateral shift and migration rates were calculated on each cross-section (Fig. 4 and Table 4).

In the first phase i.e. 1962 to 1992, maximum shifting can be observed on **ef**, **mn** and **st** cross sections. After measuring migration distances on every cross-section, it is evident that in that period the river shifted westwards.

Average migration for this time period was 1.01 Km. and average migration rate was 16.88 metres/year. Second phase indicates varied nature of river shifting, because on **ef**, **ij**, **kl**, **mn** and **uv** cross-sections river shifted migrated eastward, whereas in other cross sections river kept its previous westward trend. ef, mn and st cross-sections faced higher amount of lateral migration in this phase. Average migration rate for the period was 14.03 metres/year.

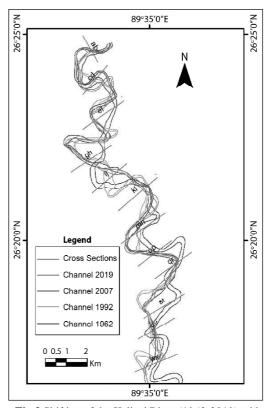
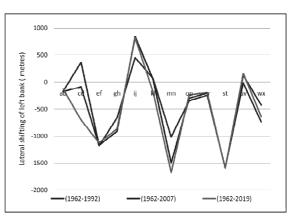



Fig.3 Shifting of the Kaljani River (1962-2019) with cross-sections

In the third or last phase, the amount of average shift was 1.26 km and average migration rate was 10.88 metres/year. Also, in this period, river kept its westward migration trend except on ij and uv sections.

Table 4. Migration rate for Kaljani River

Cross	Migration Rate (m/y)				
Sections	1962-1992	1962-2007	1962-2019		
ab	3.63	2.95	1.26		
cd	8.59	14.33	7.36		
ef	39.29	25.10	19.44		
gh	22.08	20.28	15.69		
ij	15.12	21.40	15.47		
kl	2.91	2.24	2.37		
mn	17.94	23.32	20.09		
op	10.16	5.36	4.27		
qr	6.61	4.16	2.39		
st	49.44	33.14	26.15		
uv	4.63	5.70	5.30		
WX	23.96	10.33	10.88		

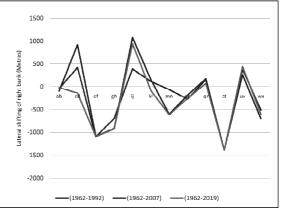


Fig.4. Lateral shift of left and right bank of the Kaljani river

Lateral shifting was more consistent for the time span of 1962 to 1992, whereas maximum CV was measured during 1962-2019 (Table: 5). Both second and third phase experienced negative value of kurtosis which indicate discrete uniform distribution of channel shifting. The valuesof Kurtosis show platy-kurtic pattern. As the values of skewness are positive, they indicate normal distribution of values in datasets. (Table 5)

Delineation of Meander Belt and Vulnerability of the Villages

Channel belt means the areas where the river is active in different study periods. For delineating active channels of the Kaljani river, it was traced by drawing polygons on GIS platform. Those polygons were overlaid and merged to get final meander belt. As channel migration has significant impact on land use, so channel belt was delineated to identify the villages and Gram panchayat areas, which were susceptible to lateral shift.

Time span Average Median SD \mathbf{CV} **Kurtosis Skewness** Shift (km) 1962-1992 1.01 0.95 0.87 0.77 0.98 1.26 1962-2007 1.26 1.11 0.93 0.87 -1.13 0.44 1962-2019 1.04 0.95 -1.07 1.24 0.90 0.48

Table 5 Descriptive Statistics of lateral shift of Kaljani River (1962-2019)

SD: stands for Standard deviation and CV: for Co-efficient of variation

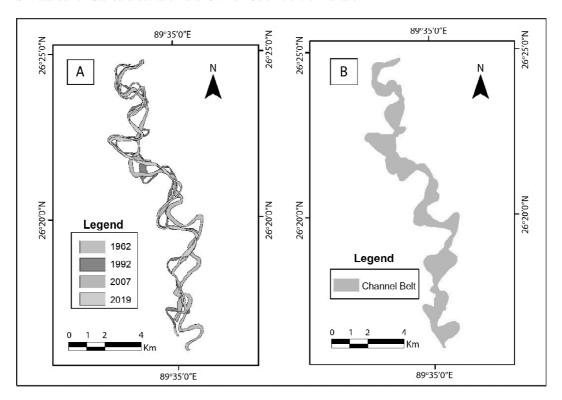


Fig. 5 A. Channel belts of the Kaljani river in different years and B. Meander belt of the Kaljani river

According to the result of RPFA method, 9 villages of Natabari-I and II, Chilakhana-I, 3 villages of Baneswar and Ambari Gram panchayats in Tufanganj-I and Cooch Behar-II blocks are very highly affected by the past change of channel position. Only one village of Maruganj Gram panchayat falls under the highly affected area. Balarampur-I and Maruganj gram panchayats have moderate impact of lateral shifting, whereas Chilakhana-II-gram panchayat has far less impact of Kaljani river.

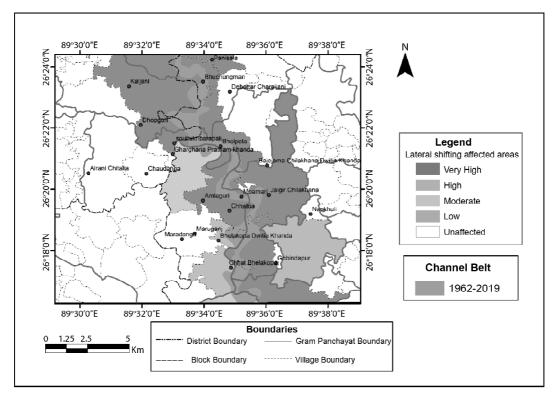


Fig.6. Vulnerable villages to meander belt due to channel shifting during 1962-2019

Conclusion

The present study aimed to delineate active channel belt for the span of 57 years (1962-2019) of Kaljani River and also to demarcate vulnerable areas to past channel shift. Toposheet and multi-temporal satellite data were used to measure channel shift and migration rate of the river.

In 1962, the river hadmeandering channel pattern with sinuosity index 1.68 but in later period the river length of the meander bends was increased. As a result, the sinuosity index increased to 1.82 in 1992. Inlater period, value of sinuosity index decreased slightly, because of straightening of some segments and in some place point bars divided the river into multiple channel. From the analysis of the changing trend of sinuosity index it can be assume that in next years the river can bifurcate in many channels to get braided form or simply takes straight path by chute formation.

In the three periods of analysis, the river kept the trend of westward shifting of both banks except in some portion of central and northern parts. Meander belt delineation and River Presence Frequency Approach was applied to estimate susceptible areas of channel migration. According to the results 12 vulnerable villages of different gram panchayats were demarcated, which will be fruitful for further planning of bank stabilization and flood protection strategies.

References

- Bierman, P. R., and Montgomery, D. R. (2014). Key concepts in geomorphology. New York, NY: W. H. Freeman.
- Brice, J.C. (1964). Channel patterns and terraces of the Loup rivers in Nebraska. *Geological Survey Professional Paper 422-D*, Washington, D2-D41.
- Chakraborty, S., and Mukhopadhyay, S. (2015). An Assessment on the Nature of Channel Migration of River Diana of the Sub-Himalayan West Bengal using Field and GIS Techniques. *Arabian Journal of Geoscience*, 8(8), 5649-5661.
- Dey, S., and Mandal, S. (2019). Assessing channel migration dynamics and vulnerability (1977-2018) of the Torsa River in the Duars and Tal region of eastern Himalaya foothills, West Bengal, India. *Spatial Information Research*, 27(1), 75-86. https://doi.org/10.1007/s41324-018-0213-z
- Dhar, O. N., and Nandargi, S. (2000). A study of floods in the Brahmaputra basin in India. *International Journal of Climatology*, 20, 771-781.
- Dhari, S., Arya, D.S. and Murumkar, A.R. (2015). Application of remote sensing and GIS in sinuosity and river shifting analysis of the Ganges River in Uttarakhand plains. *Applied Geomatics*, 7(1), 13-21. https://doi.org/10.1007/s12518-014-0147-7
- Friedkin, J. F. (1945). A laboratory study of the meandering of alluvial rivers. *US Waterways Experiment Station*, Vicksburg.
- Friend, P.F., and Sinha, R. (1993). Braiding and meandering parameters. In Braided Rivers, *Geological Society Special Publication*, 75, 105-111.
- Ghosh, S., and Mistri, B. (2015). Geographic concerns on flood climate and flood hydrology in monsoon-dominated Damodar river basin, Eastern India. *Geography Journal*, 1-16.
- Gogoi, C., and Goswami, D. (2013). A study on bank erosion and bank line migration pattern of the Subansiri River in Assam using remote sensing and GIS technology. The International Journal of Engineering and Science (IJES), 2(9), 01-06.
- Lane, S. N., and Richards, K. S. (1997). Linking river channel form and process: Time, space and causality revisited. Earth Surface Processes and Landforms, 24, 249-260.
- Leopold, L.B., and Wolman, M.C. (1957). River channel pattern: braided, meandering and straight. *Professional paper 282-B*. Washington: US Geological Survey.
- Li, L., Lu, X., and Chen, Z. (2007). River channel change during the last 50 years in the middle Yangtze river, the Jianli reach. *Geomorphology*, 85, 185-196.
- Mandal, A. C., Patra, P., Majumdar, R., Ghosh, D. K., and Bhunia, G. S. (2018). Evaluating meander shifting dynamics (1977-2017) of the Bhagirathi river course in Murshidabad District, West Bengal, India. *Spatial Information Research*, 26(1), 33-45. https://doi.org/10.1007/s41324-017-0153-z 9.
- Mueller, J.R. (1968). An Introduction to the Hydraulic and Topographic Sinuosity Indexes. *Annals of the Association of American Geographers*, 58(2), 371-385.
- Mukherjee, K., and Pal, S. (2018). Channel Migration Zone Mapping of the River Ganga in the Diara surrounding region of Eastern India. *Environmental Development and Sustainability*. https://doi.org/10.1007/s10668-017-9984-y
- Ophra, S. J., Begum, S., Islam, R., and Islam, M. N. (2018). Assessment of bank erosion and channel shifting of Padma River in Bangladesh using RS and GIS techniques. *Spatial Information Research*, 26(6), 599-605.

- Pati, J. K., Lal, J., Prakash, K., and Bhusan, R. (2008). Spatio-temporal shift of western bank of the Ganga river at Allahabad city and its implications. *Journal of Indian Society of Remote Sensing*, 36(3), 289-297
- Rapp, C. F., and Abbe, T. B. (2003). A framework for delineating channel migration zones. Washington State Department of Ecology and Washington State Department of Transportation. Ecology Final Draft Publication #03-06-027, 1-50.
- Rinaldi, M. (2003). Recent channel adjustments in alluvial rivers of Tuscany, central Italy. *Earth Surface Processes and Landforms*, 28, 587-608.
- Rust, B. R. (1978). A classification of alluvial channel system. In: Maill AD (ed) Fluvial Sedimentology. Can. Soc. Petrol. Geol. Mem., 5, 187-189.
- Sarma, J. N. and Acharjee, S. (2012). A GIS based study on bank erosion by the river Brahmaputra around Kaziranga National Park, Assam, India. *Earth Syst. Dynam. Discuss.*, 3, 1085-1106. https://doi.org/10.5194/esdd-3-1085-2012
- Schumm, S. A. (1977). The Fluvial System. New York: Wiley.
- Thakur, P. K., Laha, C. and Aggarwal, S. P. (2012). River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS. *Natural Hazards*, 61, 967-987.
- Yang, X., Damen, M.C.J. and Zuidam, R.A. (1999). Satellite remote sensing and GIS for the analysis of channel migration changes in active Yellow River Delta, China. *JAG*, 1(2), 146-157.